LACK OF DIETARY DEPENDENCE OF LIVER ADENYLATE KINASE LEVELS

María Rosa DE SAGARRA

Instituto de Enzimología del CSIC, Facultad de Medicina de la Universidad Autónoma, Madrid, Spain

Received 20 July 1978

1. Introduction

It is very important for the regulation of cellular metabolism that a balance of the concentrations of adenine nucleotides be maintained in any physiological condition [1]. The activity of rat liver adenylate kinase, a key enzyme for such equilibrium, is high enough in any metabolic situation to effeciently maintain the necessary balance of adenine nucleotides. Therefore, the existence of a control of adenylate kinase activity which depends on the metabolic condition of the animal seems unlikely. Nevertheless, an almost 3-fold increase in rat liver adenylate kinase activity after 48 h fasting and a drop to 30% normalfeed levels when 48 h fasting was followed by 24 h refeeding with a glucose-rich diet was reported [2]. A critical examination of the significance of this observation is reported here.

2. Materials and methods

Male white rats were fed ad libitum with a standard diet, fasted or fed a glucose-rich diet [3]. The animals were killed by decapitation. The livers were excised, weighed and homogenized with 4 vol. cold 0.25 M sucrose in a glass homogenizer with a Teflon pestle. The homogenate was centrifuged at $400 \times g$ for 1 min to remove cellular debris, and the supernatant, referred to as 'crude homogenate', was used for enzyme analysis. The crude homogenate was further centrifuged at $13\ 000 \times g$ for $15\ \text{min}$ to sediment mitochondria and nuclei, and the supernatant, con-

taining cytosol plus microsomes, was also used for enzyme assay. When indicated, aliquots of each fraction were incubated 5 min at 0° C with 1% Triton X-100 before assay of adenylate kinase activity. All operations were carried out at $0-4^{\circ}$ C.

Adenylate kinase activity was assayed at 25°C in the presence of glucose, NADP⁺, hexokinase, glucose-6-phosphate dehydrogenase and ADP, as in [4]. Enzyme activities are expressed as μ mol ATP formed/min/g liver \times 2.

3. Results

As can be seen in table 1, the activity of adenylate kinase doubled in rat liver after 48 h fasting when measured in crude homogenate. When rats which had fasted for 24 h were refed for another 24 h with the glucose-rich diet, assays of adenylate kinase activity in crude homogenates gave results similar to those obtained with normally-fed animals. Treatment of crude homogenate with Triton X-100 caused adenylate kinase activity to increase, as compared with the same untreated fraction, in livers obtained from normally fed rats and from those in which 48 h fasting was followed by 24 h glucose-rich diet, but not in those obtained from 48 h fasted rats. The values obtained for adenylate kinase activity in the three dietary conditions tested were not significantly different in homogenates treated with Triton X-100.

About 50% crude homogenate activity was found to be located in the 13 000 \times g supernatant fraction.

Table 1 Effect of diet on adenylate kinase activity in rat liver

				Adenylate kinase	Adenylate kinase activity (units/g liver)		
Dietary condition	Body wt (g)	Liver wt (g)	No. animals	Crude homog.	Crude homog. + Triton X-100	13 000 × g supernatant	13 000 x g supernatant + Triton X-100
Normally fed	343 ± 96	11.1 ± 5.1	12	35.5 ± 15.9	58.2 ± 27.8	18.4 ± 10.4	20.4 ± 10.9
48 h fasted 48 h fasted +	365 ± 24	8.2 ± 1.3^{a}	4	72.8 ± 7.9b	74.8 ± 17.7	28.3 ± 7.4	28.4 ± 1.3
24 h refed with glucose-rich diet	292 ± 84	10.7 ± 5.1	12	34.1 ± 17.7	57.9 ± 29.6	16.2 ± 7.8	18.1 ± 8.9
a p < 0.05 b p < 0.001							

Preparation of liver tissue, enzyme activity assay and dietary conditions are described in text. Results are given as means ± SD. Significances of differences, as compared with normally fed, have been calculated by means of the Student's t-test

4. Discussion

Adenylate kinase activity has been reported to be associated with different homogenate fractions [2,5,6]. Such findings have been related to different homogenizing conditions [4]. Adenylate kinase activity was assayed [2] in liver extract supernatants after 13 000 X g centrifugation for 15 min. In the results shown here, about 50% activity measured in crude homogenate was lost in the particulate fraction. When the extraction conditions in [2] were used, we could partly reproduce the results reported [2] in crude homogenate; nevertheless, upon releasing criptic enzyme activity in the presence of Triton X-100, we found that total liver adenylate kinase activity was the same for all the dietary conditions tested.

We therefore conclude that liver adenylate kinase is not inducible by diet, a conclusion which is to be expected, given the high activity and the biological importance of this enzyme. In view of the results shown here and in [2], it seems possible that

adenylate kinase could be included within the recently proposed category of ambiguitous enzymes [7].

Acknowledgements

I am grateful to Dr A. Sols for advice and encouragement during the present work.

References

- [1] Atkinson, D. E. (1977) in: Cellular Energy Metabolism and its Regulation, Academic Press, New York.
- [2] Adelman, R. C., Lo, C. and Weinhouse, S. J. (1968)J. Biol. Chem. 243, 2538-2544.
- [3] Adelman, R. C., Spolter, P. D. and Weinhouse, S. J. (1966) J. Biol. Chem. 241, 5467-5472.
- [4] Lagunas, R. and Sols, A. (1970) FEBS Lett. 8, 221-223.
- [5] Kielley, W. W. and Kielley, R. K. (1951) J. Biol. Chem. 191, 485-500.
- [6] Heldt, H. W. and Schwalbach, K. (1967) Eur. J. Biochem. 1, 199-206.
- [7] Wilson, J. E. (1978) Trends Biochem. Sci. 3, 124-125.